Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

نویسندگان

  • P V Bodine
  • G Litwack
چکیده

We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that the endogenous heat-stable glucocorticoid receptor stabilizing factor is a metal component of the untransformed receptor complex.

Boiled cytosols prepared from a wide variety of sources contain a low Mr factor that inhibits glucocorticoid receptor transformation to the DNA-binding state (Leach, K.L., Grippo, J.F., Housley, P.R., Dahmer, M.K., Salive, M.E., and Pratt, W.B. (1982) J. Biol. Chem. 257, 381-388). In this work, we show that this endogenous factor, which is partially purified from rat liver, produces all of the ...

متن کامل

Evidence that removal of an endogenous metal that stabilizes the untransformed glucocorticoid receptor in cytosol allows ligand-independent receptor transformation.

Cytosol preparations contain an endogenous heat-stable factor which stabilizes the glucocorticoid receptor in its untransformed, non DNA-binding form. Elution of a partially purified preparation of this stabilizing factor through a metal chelating resin (Chelex-100) leads to the loss of its ability to inhibit temperature-mediated transformation of the receptor. Sodium molybdate mimicks the abil...

متن کامل

Evidence that the endogenous heat-stable glucocorticoid receptor-activating factor is thioredoxin.

Extraction of rat liver cytosol with 10% charcoal at 4 degrees C inactivates specific glucocorticoid-binding capacity. The steroid-binding capacity of extracted cytosol can be restored by adding dithiothreitol or by incubating with boiled liver cytosol at 20 degrees C in the presence of 10 mM sodium molybdate. Two components of boiled cytosol are required for receptor activation: NADPH and an e...

متن کامل

Transformation of glucocorticoid and progesterone receptors to the DNA-binding state.

This brief review explores some recent observations relating to the structure of untransformed glucocorticoid and progesterone receptors and the mechanism by which the receptors are transformed to the DNA-binding state. In their molybdatestabilized, untransformed state, progesterone and glucocorticoid receptors exist as a heteromeric 8-9S complex containing one unit of steroid binding phosphopr...

متن کامل

Elimination and reconstitution of the requirement for hormone in promoting temperature-dependent transformation of cytosolic glucocorticoid receptors to the DNA-binding state.

Cytosols contain a heat-stable, chelatable, anionic, molybdate-like factor that stabilizes glucocorticoid receptors in a heteromeric complex with hsp90 (refers to the 90-kDa heat shock protein) and inhibits their transformation to the DNA-binding state (Meshinchi, S., Grippo, J.F., Sanchez, E.R., Bresnick, E.H., and Pratt, W.B. (1988) J. Biol. Chem. 263, 16809-16817). In this work, we demonstra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 1988